NiX Series Switching Actuators RMG 4S
 RME 4 S
 RMG 4 C-Load
 RME 4 C-Load

RMG 4 S
Basic module/4 channels

RMG C-Last
Basic module/4 channels

RME 4 S
Extension module/4 channels

RME 4 C-Last Extension module/4 channels

RMG 4 S	4900204
RME 4 S	4900205
RMG 4 C-Last	4900206
RME 4 C-Last	4900207

Contents

1 Functional characteristics 3
1.1 Operation 4
1.2 Features of the switching actuators 4
2 Technical data 5
2.1 Technical data for RMG 4 S and RME 4 S 5
2.2 Technical data for RMG 4 C-Load and RME 4 C-Load 7
3 The application program "RMG 4 S MiX " 8
3.1 Selection in the product database 8
3.2 Communication objects. 8
3.2.1 Object description 9
3.3 Parameters 12
3.3.1 Parameter pages 12
3.3.2 The function "Switching on/off" 13
3.3.3 The function "On/off time delay" 16
3.3.4 The "Pulse function" 20
3.3.5 The function "Staircase light timer with pre-warning function" 23
4 Application in a MIX2 system 26
4.1 Characteristics of the communications objects 27
4.2 Description of objects 28
4.3 Parameter overview 30
4.3.1 The "RME 4 channel C1: Function selection" parameter page 31
4.3.2 The "Contact characteristics" parameter page 32
4.3.3 The "On/Off delay" parameter page 33
4.3.4 The "Pulse function" parameter page 33
4.3.5 The staircase time switch with pre-warning. 34
4.3.6 The power loss and restoration parameter page 35
5 Appendix 37
5.1 The scenes 37
5.1.1 Principle 37
5.1.2 Saving scenes (teach in) 37
5.1.3 Calling scenes. 38

1 Functional characteristics

The $\operatorname{Mi} \mathbb{C}$ Series is a freely configurable range of devices comprising basic modules (e.g. RMG 4 S or RMG 4 C-Load) and extension modules (e.g. RME 4 S or RME 4 C-Load). Up to 2 extension modules of your choice can be connected in series to any of the basic modules in the range.

The RMG 4 S basic module is a 4-channel switching actuator with a switching capacity of 16 A per channel for standard load types such as incandescent lamps up to 2300 W , energy saving lamps etc.

The RME 4 S extension module is a 4-channel switching actuator with a switching capacity of 16 A per channel for standard load types such as incandescent lamps up to 2300 W , energy saving lamps etc.

The RMG 4 C-Load basic module is a 4-channel switching actuator with a switching capacity of 16 A per channel for load types with high switch-on peaks, such as incandescent lamps up to 3680 W , luminous bands, capacitive loads etc.

The RME 4 C-Load extension module is a 4-channel switching actuator with a switching capacity of 16 A per channel for load types with high switch-on peaks, such as incandescent lamps up to 3680 W , luminous bands, capacitive loads etc.

Each channel of these switching actuators has an LED which indicates its switching status and a manual switch with the settings ON/OFF/BUS. A mains power supply is required for operation of the manual switch, but the bus voltage does not need to be present. The switching actuators can adopt a parameterized status within 1 second of the mains power being restored, and are therefore suitable for use in installations according to VDE 0108.
Features which can be adjusted via parameter settings including the basic functions of "switching", "delayed switching" and "pulse function". In addition, the following can be parameterized for each channel: links, type of contact (NC/NO) and participation in central commands such as continuous ON, continuous OFF, central switching and save/recall scene.

1.1 Operation

Turning the manual switch to " 0 " opens the relay contact irrespective of all other parameters, and the status LED for the channel is switched off.
Turning the manual switch to " 1 " closes the relay contact irrespective of all other parameters, and the status LED for the channel turns red.
Turning the manual switch to the "Bus" setting allows you to control the relay contact via the bus. The status LED for the channel lights up red if the contact is closed and goes out if the contact is open. A mains power supply is required for operation of the manual switches and the LEDs, but the bus voltage is not required.

1.2 Features of the switching actuators

- Manual switch for each channel
- Status LED for each channel
- High switching capacity
- Extensionable modular concept for a variety of applications
- Extensionable to 12 channels per bus user
- Different modules can be combined to meet the exact requirements of the user and to offer the best possible value for money
- 4 different channel functions can be selected:
- Switching
- Switching with ON/OFF time delay
- Pulse function
- User-friendly staircase light timer with switch-off pre-warning
- Possible integration of the channels into a maximum of 8 scenes
- Adjustable response to bus failure and restoration of the bus/mains power
- Can be used in installations according to VDE 0108
- Logical functions

2 Technical data

2.1 Technical data for RMG 4 S and RME 4 S

Voltage supply:
Permitted operating temperature:
Power draw from the mains supply
Current draw from bus voltage (for RMG4 S)
Bus connection (for RMG4 S):
Protection class:
Protection rating:
Dimensions of device:
Dimensions of front panel:

Outputs

Quantity:
Type of contact:
Contact opening:
Mechanical switching operations:
Nominal voltage:
Nominal current:

Switching of different phases:
Switching of SELV voltages:

Switching capacity

Resistive load:
Capacitive load:
Incandescent lamps:
High-voltage halogen lamps
Fluorescent lamps, uncorrected:
Fluorescent lamps, parallel-corrected:
Fluorescent lamps, DUO switching (conventional ballast):
Energy saving fluorescent lamps:

- with electronic ballast QTEC 1×58 (Osram)
- with electronic ballast QTEC 1×36 (Osram)
- with electronic ballast QTEC 2×58 (Osram)
- with electronic ballast QTEC 2×36

Mains voltage $230 \mathrm{~V} / 50 \mathrm{~Hz}+/-10 \%$ additional bus voltage for RMG4 S
$-10^{\circ} \mathrm{C} . . .+50^{\circ} \mathrm{C}$
2.5 VA

Max. 10 mA
Bus terminal
II
EN 60529: IP 20
HxWxD 90 x 72 x 68 (mm)
HxW 45 x 72 (mm)

4

Potential-free NO contact
$<3 \mathrm{~mm}$
$>1 \times 10^{6}$
230 V AC $+-10 \%$, 45 to 60 Hz
$16 \mathrm{~A}(250 \mathrm{~V} \mathrm{AC}, \cos \varphi=1)$
$10 \mathrm{~A}(250 \mathrm{~V} \mathrm{AC}, \cos \varphi=0.6)$
possible
Yes, if all channels are connected to SELV

3680 W
max. $42 \mu \mathrm{~F}$
2300 W
2300 W
$26 \times 40 \mathrm{~W}, 20 \times 58 \mathrm{~W}, 10 \times 100 \mathrm{~W}$
$10 \mathrm{x} 40 \mathrm{~W}(4.7 \mu \mathrm{~F}), 6 \times 58 \mathrm{~W}(7.0 \mu \mathrm{~F}), 2 \mathrm{x}$
$100 \mathrm{~W}(18 \mu \mathrm{~F})$
$10 \times(2 \times 58 \mathrm{~W}), 5 \times(2 \times 100 \mathrm{~W})$
$12 \times 58 \mathrm{~W}$
$9 \times 36 \mathrm{~W}$
$7 \times(2 \times 58 W)$
$5 \times(2 \times 36 W)$
(Osram)

- with electronic ballast HF 450-1 $1 \times 58 \quad 7 \times 58 \mathrm{~W}$ (Osram)
- with electronic ballast HF 432-1 $1 \times 3613 \times 36 \mathrm{~W}$ (Osram)
- with electronic ballast HF 450-2 $2 \times 58 \quad 4 \times(2 \times 58 W)$ (Osram)
- with electronic ballast HF 432-2 $2 \times 36 \quad 9 \times(2 \times 36 \mathrm{~W})$ (Osram)
Energy saving compact fluorescent lamps:
- Opal type (conventional ballast) (Osram)

2300 W

- Dulux EL type (electronic ballast) (Osram)

8 x 7W, 7 x 11W, 7 x 15W, 7 x 20W, 7 x 23W

- PLCE type (electronic ballast) (Philips) $14 \times 9 \mathrm{~W}, 13 \times 11 \mathrm{~W}, 7 \times 23 \mathrm{~W}$

Mercury vapour lamps:

- Uncorrected: $6 \times 125 \mathrm{~W}, 3 \times 250 \mathrm{~W}$
- Parallel-corrected:

Sodium vapour lamps:

- Uncorrected:
$4 \times 70 \mathrm{~W}(12 \mu \mathrm{~F}), 4 \times 150 \mathrm{~W}(12 \mu \mathrm{~F})$, $), 1 \times$
250W ($30 \mu \mathrm{~F}$
- Parallel-corrected:
$3 \times 250 \mathrm{~W}, 1 \times 500 \mathrm{~W}$
$2 \times 150 \mathrm{~W}(20 \mu \mathrm{~F}), 1 \times 250 \mathrm{~W}(37 \mu \mathrm{~F})$

Response to failure of the voltage supply

Mains voltage:
Bus voltage only:

Response to restoration of the voltage supply

2.2 Technical data for RMG 4 C-Load and RME 4 C-Load

Voltage supply:
Permitted operating temperature:
Power draw from the mains supply:
Current draw from bus voltage:
(for RMG4 C-Load)
Bus connection (for RMG4 SC-Load):
Protection class:
Protection rating:
Dimensions of device:
Dimensions of front panel:

Outputs

Quantity:
Type of contact:
Contact opening:
Mechanical switching operations:
Nominal voltage:
Nominal current:

Switching of different phases:
Switching of SELV voltages:

Switching capacity

Resistive load
Capacitive load
Incandescent lamps:
Fluorescent lamps, uncorrected
Fluorescent lamps, parallel-corrected
Fluorescent lamps, DUO switching
Halogen lamps, 230 VAC
Low-voltage halogen lamps with transformer
Mercury/Sodium vapour lamps uncorrected
Mercury/Sodium vapour lamps
parallel-corrected
Dulux lamps, uncorrected
Dulux lamps, parallel-corrected

Response to failure of the voltage supply

Mains voltage:
Bus voltage only:

Response to restoration of the voltage supply

Mains voltage $230 \mathrm{~V} / 50 \mathrm{~Hz}+/-10$ \%
additional bus voltage for RMG4 C-Load
$-10^{\circ} \mathrm{C} . .+50^{\circ} \mathrm{C}$
2.5 VA

Max. 10 mA
Bus terminal
II
EN 60529: IP 20
HxWxD 90 x 72 x 68 (mm)
HxW 45 x 72 (mm)

4

potential-free, normally open
$<3 \mathrm{~mm}$
$>1 \times 10^{6}$
230 V AC $+-10 \%, 45$ to 60 Hz
16 A (250 V AC, $\cos \varphi=1$)
$16 \mathrm{~A}(250 \mathrm{~V} \mathrm{AC}, \cos \varphi=0.6)$
possible
Possible provided all 4 outputs can switch SELV

3680 W
max. $200 \mu \mathrm{~F}$
3680 W
3680 W
$2500 \mathrm{~W} / 200 \mu \mathrm{~F}$
3680 W
3680 W
2000 W
3680 W
3680 W/ $200 \mu \mathrm{~F}$
3680 W
$3000 \mathrm{~W} / 200 \mu \mathrm{~F}$

Relay contacts remain unchanged
Adjustable
Adjustable

3 The application program "RMG 4 S MiX"

3.1 Selection in the product database

Manufacturer	THEBEN AG
Product family	Output
Product type	MiX Series
Program name	RMG 4 MiX

Download the application from: http://www.theben.de

Table 1

Number of communication objects:	Max. 64
Number of group addresses:	110
Number of assignments:	111

3.2 Communication objects

Table 2

No.	Function	Object name	Type	Behaviour
0	Switching ON/OFF	BM RMG4 Channel 1	EIS 1	Receive
1	Depending on the function and the linking of the channel - Disable - Input in AND gate - Input 2 in OR gate - Override	BM RMG4 Channel 1	EIS 1	Receive
2	With OR link selected: Input 3 in OR gate	BM RMG4 Channel 1	EIS 1	Receive
3	With OR link selected: Input 4 in OR gate	BM RMG4 Channel 1	EIS 1	Receive
4	Feedback	BM RMG4 Channel 1	EIS 1	Send
5-59 for all channels and modules according to channel 1 of the basic module, see table 3.			
60	Switching ON/OFF	Central continuous ON	EIS 1	Receive
61	Switching ON/OFF	Central continuous OFF	EIS 1	Receive
62	Switching ON/OFF	Central switching	EIS 1	Receive
63	Recall/save scene	Scene	EIS 1	Receive

Table 3
Comparison table for the individual objects (object numbers) of the channels

Function of the object	BM ch. 1	BM ch. 2	BM ch. 3	BM ch. 4	EM1 ch.	EM1 ch. 2	EM1 ch. 3	EM1 ch. 4	EM2 ch. 1	EM2 ch. 2	EM2 ch. 3	EM2 ch. 4
Switching ON/OFF	0	5	10	15	20	25	30	35	40	45	50	55
Depending on the function and the logic of the channel -Disable -Input in AND gate -Input 2 in OR gate -Override	1	6	11	16	21	26	31	36	41	46	51	56
With OR function: Input 3 in OR gate	2	7	12	17	22	27	32	37	42	47	52	57
With OR function: Input 4 in OR gate	3	8	13	18	23	28	33	38	43	48	53	58
Feedback	4	9	14	19	24	29	34	39	44	49	54	59

3.2.1 Object description

- Object 0 "Switch ON/OFF"

This object is the actual input object for channel 1 of the basic module.
It acts on the function selected in the parameter page of the channel.

- Object 1 "input in AND gate" / "input in OR gate" / "lock" / "enable"

This object is the second input object for the logic gate of channel 1 of the basic module and acts on the selected logic function.

- Object 2 "input in OR gate"

This object is the third input object for the logic gate of channel 1 of the basic module. It only appears if an OR function is selected.

- Object 3 "input in OR gate"

This object is the fourth input object for the logic gate of channel 1 of the basic module. It only appears if an OR function is selected.

- Object 4 "RMG4 channel 1 feedback"

This object is the output object of channel 1 of the basic module. This object returns the switching status of the channel.

- Object 60 "Central continuous ON"

This object is a central object. It can be configured to be effective on all channels.
If this object is set to " 1 " then all of the channels "participating" in this object are switched on. If this object is set to " 0 " then it has no effect on the channels.

- Object 61 "Central continuous OFF"

This object is a central object. It can be configured to be effective on all channels.
If this object is set to "1" then all of the channels "participating" in this object are switched off.
If this object is set to " 0 " then it has no effect on the channels.

- Object 62 "Central switching"

This object is a central object. It can be configured to be effective on all channels. If a " 1 " or " 0 " is sent to this object then this is the same as if a " 1 " or " 0 " is sent to the switching objects of the channels (Object 0 , Object 5 , Object $10 \ldots$...). The same functionality could also be achieved by connecting all switching objects to the same group as that of this object.
Accordingly, using this object saves time during the assignment of the group addresses and also saves on the number of assignments.

- Object 63 "Recall/save scene"

This object can be used to save and subsequently recall "Scenes".
The save process stores the status of the channel, regardless of how the status was brought about (e.g. via switching commands, central objects or the manual switches). The saved status is re-established when it is recalled.
Each channel can participate in a maximum of 8 scenes.

Table 4. The following messages need to be sent in order to recall or save scenes:

Function	Hexadecimal value	Decimal value	Function
Save scene 1	$\$ 80$	128	Each channel saves its current status
Save scene 2	$\$ 81$	129	in the scene memory with the sent
Save scene 3	$\$ 82$	130	scene number, provided the channel
Save scene 4	$\$ 83$	131	is intended to participate in this
Save scene 5	$\$ 84$	132	scene.
Save scene 6	$\$ 85$	133	This scene memory remains alive
Save scene 7	$\$ 86$	134	even after bus failure or mains
Save scene 8	$\$ 87$	135	failure.
Recall scene 1	$\$ 00$	0	Each channel adopts the status stored
Recall scene 2	$\$ 01$	1	in the scene memory under the sent
Recall scene 3	$\$ 02$	2	scene memory, provided the channel
Recall scene 4	$\$ 03$	3	is intended to take part in this scene.
Recall scene 5	$\$ 04$	4	
Recall scene 6	$\$ 05$	5	
Recall scene 7	$\$ 06$	6	
Recall scene 8	$\$ 07$	7	

3.3 Parameters

3.3.1 Parameter pages

Function	Description
General	Selection of the connected extension modules and the general parameter for the cyclic sending of feedback
RMG 4 channel 1	Parameter for channel 1 of the basic module.
RMG 4 channel 2	Parameter for channel 2 of the basic module.
RMG 4 channel 3	Parameter for channel 3 of the basic module.
RMG 4 channel 4	Parameter for channel 4 of the basic module.
EM 1 RME 4 channel 1	Parameter for channel 1 of the first extension module.
EM 1 RME 4 channel 2	Parameter for channel 2 of the first extension module.
EM 1 RME 4 channel 3	Parameter for channel 3 of the first extension module.
EM 1 RME 4 channel 4	Parameter for channel 4 of the first extension module.
EM 2 RME 4 channel 1	Parameter for channel 1 of the second extension module.
EM 2 RME 4 channel 2	Parameter for channel 2 of the second extension module.
EM 2 RME 4 channel 3	Parameter for channel 3 of the second extension module.
EM 2 RME 4 channel 4	Parameter for channel 4 of the second extension module.

Each channel has a parameter page. All pages (and channels) have an identical structure.
The first and most important parameter on a page is the parameter "Function". This defines the function of the channel.

Possible functions include:

- Switching on/off
- On/off time delay
- Pulse function
- Staircase light timer with pre-warning function

Depending on the function, the parameters listed below may change.

3.3.2 The function "Switching on/off"

Basic functionality:
If the switching object is set to " 1 " then the channel is switched on.
If the switching object is set to " 0 " then the channel is switched off.
If the function "Switching on/off" is selected then the following parameters are available:
Table 5

Designation	Values	Meaning
Type of contact	NO contact NC contact	NO contact: the contact is closed when a switch-on command is present. NC contact: the contact is opened when a switch-on command is present. This parameter only applies to the operation of the bus - the function of the manual switch is not affected by it.
Input logic	None Disable OR AND Enable	None: The channel has the status according to the switching object. Disable: If the linking object is set to 0 then the contact is in the position according to the switching object. If the linking object is set to "1" then the channel is OFF. OR: If the switching object or at least one of the 3 linking objects is set to "1" then the contact is ON. If none of the 4 input objects are set then the channel is OFF. AND: If the switching object and the linking abject are set to "1" then the channel is ON. Enable: If the linking object is set to "1" and afterwards the switching object is set to "1" then the channel switches ON. If one of the objects is set to "0" or the switching object is set to "1" first (before the linking object) then the channel is OFF.

Continued
$\left.\begin{array}{|l|l|l|}\hline \text { Designation } & \begin{array}{l}\text { Values } \\ \text { Participation in central } \\ \text { objects }\end{array} & \begin{array}{l}\text { Yes, in all central objects } \\ \text { No, in no central object } \\ \text { Only in central continuous ON } \\ \text { Only in central continuous OFF } \\ \text { Only in central switching and } \\ \text { continuous ON } \\ \text { Only in central switching and } \\ \text { continuous OFF } \\ \text { Only in continuous OFF and } \\ \text { continuous ON }\end{array}\end{array} \begin{array}{l}\text { Meaning } \\ \text { Defines which central objects the channel } \\ \text { responds to. The central objects have the } \\ \text { following priority: } \\ \text { If continuous ON is set to "1" then the } \\ \text { channel is switched on regardless of the } \\ \text { other objects. } \\ \text { If continuous ON is set to "0" and } \\ \text { continuous OFF is set to "1" then the channel } \\ \text { is switched off regardless of the other } \\ \text { objects. } \\ \text { Central switching does not take priority over } \\ \text { the switching object - the last command to } \\ \text { be sent applies. } \\ \text { The manual switches on the device take } \\ \text { priority over all bus commands. }\end{array}\right\}$

3.3.3 The function "On/off time delay"

Basic functionality:

If the channel is switched off and a "1" is sent to the switching object then the switch-on delay time starts. The switch-on takes place once the switch-on delay time has elapsed.
If the channel is switched on and a " 0 " is sent to the switching object then the switch-off delay time starts. The switch-off takes place once the switch-off delay has elapsed.
If while a delay time is running the inverse status is sent then the delay time stops. There is then no switchover.
If while a delay time is running the same status is sent again then this has no effect on the current delay time.

If the function "On/off time delay" is selected then the following parameters are available:
Table 6

Designation	Values	Meaning
Basis for on or off time delay	1 s 10 s 30 s $\mathbf{1 ~ m i n . ~}$	Defines the switch-on time delay and the switch- off time delay in conjunction with the "switch-on time delay factor" and the "switch off time delay factor".
Switch-on time delay factor	$0-255$	Defines the switch-on time delay in conjunction with the "basis for on and off time delay". Switch-on time delay = basis * factor The factor 0 means that the switching operation is performed without delay. The maximum error on the timer is 5\% of the basis. Example: Basis = 10 s, any factor Error: max. 0.5 sec
Switch-off time delay factor	$0-255$	Defines the switch-off time delay in conjunction with the "basis for on and off time delay". Switch-off time delay = basis * factor The factor 0 means that the switching operation is performed without delay. The maximum error on the timer is 5\% of the basis. Example: Basis = 10 s, any factor Error: max. 0.5 sec

Continued

Designation	Values	Meaning
Link	None Disable OR AND Enable	None: The channel has the function described at the beginning. Disable: If the linking object is set to " 1 " then no switch-on is possible via the switching object. If the channel is switched on then it will switch off again after the switch-off delay time. If the linking object is set to "0" then the channel has the function described at the beginning. OR: If the switching object or at least one of the 3 linking objects is set to " 1 " then a switch-on is performed after the switch-on delay time. If all objects are set to "0" then a switch-off is performed after the switch-off delay time. AND: If the linking object is set to " 0 " then no switch-on is possible via the switching object. If the channel is switched on then it will switch off again after the switch-off delay time. If the linking object is set to "1" then the channel has the function described at the beginning. Enable: If the linking object is set to " 1 " and afterwards the switching object is set to "1" then the channel switches ON after the switch-on delay time. If at least one of the objects is set to "0" or the switching object is set to "1" first (before the linking object) then the channel switches off after the switch-off time delay.
Participation in central objects	Yes, in all central objects No, in no central object Only in central continuous ON Only in central continuous OFF Only in central switching and continuous ON Only in central switching and continuous OFF Only in continuous OFF and continuous ON	Defines which central objects the channel responds to. The central objects have the following priority: If continuous ON is set to " 1 " then the channel is switched on without a delay, regardless of the other objects. If continuous ON is set to " 0 " and continuous OFF is set to " 1 " then the channel is switched off without a delay, regardless of the other objects. Central switching does not take priority over the switching object - the last command to be sent applies. The manual switches on the device take priority over all bus commands.
Sending feedback	On change only Cyclically and in the event of change	Defines whether the status of the channel is only sent after a change in the switching status, or whether it is also sent at regular intervals within the cycle time specified on the "General" page. After restoration of the mains supply every status is resent; after restoration of the bus supply every changed status is resent.

Continued

Designation	Values	Meaning
Behaviour in the event of bus failure	Unchanged ON OFF	If the bus voltage has failed for more than 6 seconds then the channel adopts the status defined here. The same applies to a complete or partial download of the application. If the value is "unchanged" then the channel status is retained and the timers are deleted.
Behaviour after restoration of the mains supply or bus supply	Same as before failure ON OFF	After restoration of the mains supply or restoration of the bus supply with the mains voltage present, the channels revert to the status defined here within a time frame of 1 second. When mains power is restored, the relays on the RMG4 S are briefly activated (approx. 50 ms) before the configured status is adopted.

3.3.4 The "Pulse function"

Basic functionality:

A "1" on the switching object switches the channel on for the duration of a pulse length. If a " 1 " is sent again during this switch-on phase then the channel remains switched on for the duration of a further pulse length.
If a " 0 " is sent during this switch-on phase then the channel switches off immediately. If the function "Pulse function" is selected then the following parameters are available:
Table 7

Designation	Values	Meaning
Type of contact	NO contact NC contact	NO contact: the contact is closed when a switch-on command is present. NC contact: the contact is opened when a switch- on command is present. This parameter only applies to the operation of the bus - the function of the manual switch is not affected by it.
Basis for pulse length	1 s 10 s 30 s $\mathbf{1 ~ m i n . ~}$	Defines the pulse length together with the "pulse length factor".
Pulse length factor	1 -255	Defines the pulse length together with the "basis for pulse length". Pulse length = basis * factor
Link	The maximum error on the timer is 5\% of the basis. Example: Basis = 10 s, any factor Error: max. 0.5 sec.	
None Disable AND Override	None: The channel only reacts to the switching object in the way described at the beginning. Disable: If the linking object is set to "1" then no pulse can be started. The linking object has no meaning for pulses which are already running. AND: If the linking object is set to "0" then no pulse can be started. The linking object has no meaning for pulses which are already running. Override: If the linking object is set to "1" then the channel is switched on regardless of the switching object. Any waiting pulses are deleted during an override.	

Continued

Designation	Values	Meaning
Participation in central objects	Yes, in all central objects No, in no central object Only in central continuous ON Only in central continuous OFF Only in central switching and continuous ON Only in central switching and continuous OFF Only in continuous OFF and continuous ON	Defines which central objects the channel responds to. The central objects have the following priority: If continuous ON is set to " 1 " then the channel is switched on regardless of the other objects. If continuous ON is set to " 0 " and continuous OFF is set to "1" then the channel is switched off regardless of the other objects. Pulses are not deleted by the continuous objects, instead they continue to run in the background. Central switching does not take priority over the switching object - the last command to be sent applies. The manual switches on the device take priority over all bus commands.
Sending feedback	On change only Cyclically and in the event of change	Defines whether the status of the channel is only sent after a change in the switching status, or whether it is also sent at regular intervals within the cycle time specified on the "General" page. After restoration of the mains supply every status is resent; after restoration of the bus supply every changed status is resent.
Behaviour in the event of bus failure	Unchanged ON OFF	If the bus voltage has failed for more than 6 seconds then the channel adopts the status defined here. The same applies to a complete or partial download of the application. If the value is "unchanged" then any pulses which are still running are still executed.
Behaviour after restoration of the mains supply or bus supply	Start pulse OFF	After restoration of the mains supply or restoration of the bus supply with the mains voltage present, the channels revert to the status defined here within a time frame of 1 second. When mains power is restored, the relays on the RMG4 S are briefly activated (approx. 50 ms) before the configured status is adopted.

Function: Pulse

3.3.5 The function "Staircase light timer with pre-warning function"

Basic functionality:
A "1" on the switching object switches the channel on for the duration of the staircase light time.
If another " 1 " is sent during this switch-on time then a further staircase light time is added to the staircase light time which is already running. If a " 0 " is sent during this switch-on phase then the channel switches off after a 30 -second pre-warning.
The light flickers briefly at the start of the pre-warning period.
If the function "Staircase light timer with pre-warning function" is selected then the following parameters are available:

Table 8

Designation	Values	Meaning			
Basis for staircase light time	1 s 10 s 30 s $\mathbf{1 ~ m i n . ~}$	Defines the staircase light time together with the "staircase light time factor".			
Staircase light time factor	$1-255$	Defines the staircase light time together with the "basis for staircase light time". Staircase light time = basis * factor The maximum error on the timer is 5\% of the basis. Example: Basis = 10 s, any factor Error: max. 0.5 sec			
How many pulses max add (1..40)	$1-40$	Defines how many times the timer can be retriggered.			
Link	None Disable AND Override	None: The channel only reacts to the switching object in the way described at the beginning. Disable: If the linking object is set to "1" then no staircase lighting can be started. The linking object has no meaning for staircase lighting times which are already running. AND: If the linking object is set to "0" then no staircase lighting can be started. The linking object has no meaning for staircase lighting times which are already running. Override: If the linking object is set to "1" then the			
channel is switched on regardless of the switching					
object.					
Any waiting staircase lighting times are deleted					
during an override.			$	$	
:---					

Continued

Designation	Values	Meaning
Participation in central	Yes, in all central objects No, in no central object Only in central continuous ON Only in central continuous OFF Only in central switching and continuous ON Only in central switching and continuous OFF Only in continuous OFF and continuous ON	Defines which central objects the channel responds to. The central objects have the following priority: If continuous ON is set to "1" then the channel is switched on regardless of the other objects. If continuous ON is set to "0" and continuous OFF is set to "1" then the channel is switched off regardless of the other objects. There is a switch-off pre-warning if there is a switch-off due to the continuous objects. Staircase light times are not deleted by the continuous objects, instead they continue to run in the background. Central switching does not take priority over the switching object - the last command to be sent applies. The manual switches on the device take priority over all bus commands.
Sending feedback	On change only Cyclically and in the event of change	Defines whether the status of the channel is only sent after a change in the switching status, or whether it is also sent at regular intervals within the cycle time specified on the "General" page. After restoration of the mains supply every status is resent; after restoration of the bus supply every changed status is resent.
Behaviour after restoration of the mains supply or bus supply	Start pulse OFF	If the bus voltage has failed for more than 6 seconds then the channel adopts the status defined here. The same applies to a complete or partial download of the application. If the value is "unchanged" then any pulses which are still bun failure
runng are still executed.		

Function: Staircase light timer with pre-waming function

4 Application in a MIX2 system

A MIX 2 device (order no. 493...) can accept any number of MIX upgrade devices (order no. 491...).

The object numbers and the allocation of parameters can vary from the original MIX applications.

Note:

MIX 2 upgrade devices (order no. 493...) can only work in combination with a MIX 2 basic device (order no. 493...).

4.1 Characteristics of the communications objects

Table 9

No.	Function	Object name	Type	Response
80	Switching ON/OFF	EM1 RME 4 S / C-load channel C1	EIS 1	Receive
81	Depending on the function and the linking of the channel - Lock - Input in AND gate - Input 5.08 cm OR gate - Override	EM1 RME 4 S C-load channel C1	EIS 1	Receive
82	With OR link selected: Input 7.62 cm OR gate	EM1 RME 4 S / C-load channel C1	EIS 1	Receive
83	With OR link selected: Input 4 in OR gate	EM1 RME 4 S / C-load channel C1	EIS 1	Receive
84	Feedback	EM1 RME 4 S / C-load channel C1	EIS 1	Send
$\begin{aligned} & 85- \\ & 17 \end{aligned}$ For all additional channels incl. second RME 4 S / C-load module			
240	Switching ON/OFF	Central continuous ON	EIS 1	Receive
241	Switching ON/OFF	Central continuous OFF	EIS 1	Receive
242	Switching ON/OFF	Central switching	EIS 1	Receive
243	Call/save scene	Scene	EIS 1	Receive

4.2 Description of objects

- Object 80, 85, 90, 95, 160, 165, 170, 175 "Switching RMG4 channel 1"

This object is the actual input object for channel 1.
It acts on the function selected in the parameter page of the channel.

- Object 81, 86, 91, 96, 161, 166, 171, 176 "Input 2 in OR gate / input in AND gate / lock"

This object is an input object for the linking of channel 1 and acts on the selected link.

- Object 82, 87, 92, 97, 162, 167, 172, 177 "Input 3 in OR gate"

This object is an input object for the linking of channel 1. It only appears if an OR link is selected.

- Object 83, 88, 93, 98, 163, 168, 173, 178 "Input 10.16 cm OR gate"

This object is an input object for the linking of channel 1. It only appears if an OR link is selected.

- Object 84 , 89, 94, 99, 164, 169, 174, 179 "Feedback RMG4"

This object is the output object for channel 1 . This object reports the switching status of the channel.

- Object 240 "Central continuous On"

This object is a central object. It can be configured to work on all channels.
If this object is set to " 1 " then all of the channels "participating" in this object are switched on. If this object is set to " 0 " it does not effect the channels.

- Object 241 "Central continuous Off""

This object is a central object. It can be configured to work on all channels.
If this object is set to "1" then all of the channels "participating" in this object are switched off.
If this object is set to " 0 " it does not effect the channels.

- Object 242 "Central switching"

This object is a central object. It can be configured to work on all channels.
If a " 1 " or " 0 " is sent to this object then this is the same as if a " 1 " or " 80 " is sent to the switching objects of the channels (Object 0 , Object 85 , Object $90 \ldots$...). The same functionality could also be achieved by connecting all switching objects to the same group as that of this object.
Accordingly, using this object saves time during the assignment of the group addresses and also saves on the number of associations.

- Object 243 "Call/save central scenes"

This object can be used to save and subsequently call "scenes".
The save process stores the status of the channel, regardless of how the status was brought about (e.g. via switching commands, central objects or the manual switches). The saved status is re-established when it is called.
Each channel can participate in a maximum of 8 scenes.

4.3 Parameter overview

Table 10

Function	Description
RME 4 channel C1: Function selection	Set basic functions of channel.
Contact characteristics	Set type of contact.
On/off time delay	Set delays.
Pulse function	Set pulse length.
Staircase light time switch with pre-warning function	Set delay.

4.3.1 The "RME 4 channel C1: Function selection" parameter page

Table 11

Designation	Values	Application
Channel function	Switching On/Off On/off time delay Pulse function Staircase light time switch with pre-warning function	Basic function of channel. Determines the basic function and brings up the relevant parameter page.
Link	None	Channel status conforms with switching object.
	Lock	If the linking object is set to 0 then the contact is in the position according to the switching object. If the linking object is set to "1" then the channel is OFF.
	OR	If the switching object or at least one of the 3 linking objects is set to "1" then the contact is ON. If none of the 4 input objects are set then the channel is OFF.
	AND	If the switching object and the linking object are set to " 1 " then the channel is ON.
	Override	Only with staircase light timer: 1 = Switch light on permanently without considering time function.
	Enable	If the linking object is set to "1" and afterwards the switching object is set to " 1 " then the channel switches ON. If one of the objects is set to " 0 " or the switching object is set to " 1 " first (before the linking object) then the channel is OFF.

Continuation:

Designation	Values	Application
Participation in central objects	Yes, in all central objects No, in no central object Only in central continuous ON Only in central continuous OFF Only in central switching and continuous ON Only in central switching and continuous OFF Only in permanent OFF and permanent $O N$	Defines which central objects the channel responds to. The central objects have the following priority: If continuous ON is set to " 1 " then the channel is switched on regardless of the other objects. If permanent ON is set to " 0 " and permanent OFF is set to " 1 " then the channel is switched off regardless of the other objects. Central switching does not take priority over the switching object - the last command to be sent applies. The manual switches on the device take priority over all bus commands.
Send feedback cyclically	$\begin{gathered} \text { No } \\ \text { Yes } \end{gathered}$	Should the feedback object send cyclically? The cycle time is set on the first parameter page (\rightarrow General): Time for cyclical sending of feedback object (MIX series, order no.491...)

4.3.2 The "Contact characteristics" parameter page

This page is only available with Switching ON/OFF and pulse function.
Table 12

Designation	Values	Application
Type of contact	NO contact NC contact	NO contact: the contact is closed when a switch-on command is present. NC contact: the contact is opened when a switch-on command is present. This parameter only applies to the operation of the bus - the function of the manual switch is not affected by it.

4.3.3 The "On/Off delay" parameter page

Table 13

Designation	Values	Application
Basis for on or off time delay	1 s 10 s 30 s $\mathbf{1 ~ m i n ~}$	Defines the switch-on delay and the switch-off delay in conjunction with the "switch-on delay factor" and the "switch-off delay factor".
Switch-on time delay factor	$0-255$	Switch-on time delay = basis * factor Factor 0 means that the switching operation is performed without delay. The maximum error on the time switch is 5\% of the basis. Example: Basis = 10 s, any factor Error: max. 0.5 sec
Switch-off delay factor	$0-255$	Switch-off delay = basis *actor Factor 0 means that the switching operation is performed without delay. The maximum error on the time switch is 5\% of the basis. Example: Basis = 10 s, any factor Error: max. 0.5 sec

4.3.4 The "Pulse function" parameter page

Table 14

Designation	Values	Application
Basis for pulse length	1 s 10 s 30 s $\mathbf{1 ~ m i n}$	Defines the pulse length together with the "pulse length factor".
Factor for pulse length $1 . .255 \times$ base	$1-255$	Pulse length = basis * factor The maximum error on the timer is 5% of the basis. Example: Basis $=10 \mathrm{~s}$, any factor Error: max. 0.5 sec.

4.3.5 The staircase time switch with pre-warning

Table 15

Designation	Values	Application
Basis for staircase light time	1 s 10 s 30 s $\mathbf{1 ~ m i n}$	$1-255$
Pulse length factor	Defines the staircase light time together with the "staircase light time factor".	
Maximum number of pulses counted up 1..40	$1-40$	Staircase light time = basis * factor The maximum error on the timer is 5\% of the basis. Example: Basis = 10 s, any factor Error: max. 0.5 sec

4.3.6 The power loss and restoration parameter page

The parameters depend on the selected channel function.
Table 16

Designation	Values	Description
Channel function: Switching On/Off..		
Response in the event of bus failure	Unchanged ON OFF	If the bus voltage has failed for more than 6 seconds then the channel adopts the status defined here. The same applies to a complete or partial download of the application.
Behaviour after restoration of the mains supply or bus supply	Same as before failure ON OFF	After restoration of the mains supply or restoration of the bus supply with the mains voltage present, the channels revert to the status defined here within a time frame of 1 second.
Channel function: Switching On/Off delay..		
Response in the event of bus failure	Unchanged ON OFF	If the bus voltage has failed for more than 6 seconds then the channel adopts the status defined here. The same applies to a complete or partial download of the application. If the value is "unchanged" then the channel status is retained and the timers are deleted.
Behaviour after restoration of the mains supply or bus supply	Same as before failure ON OFF	After restoration of the mains supply or restoration of the bus supply with the mains voltage present, the channels revert to the status defined here within a time frame of 1 second.
Channel function: Pulse function..		
Response in the event of bus failure	Unchanged ON OFF	If the bus voltage has failed for more than 6 seconds then the channel adopts the status defined here. The same applies to a complete or partial download of the application. If the value is "unchanged" then any pulses which are still running are still executed.
Behaviour after restoration of the mains supply or bus supply	Start pulse OFF	After restoration of the mains supply or restoration of the bus supply with the mains voltage present, the channels revert to the status defined here within a time frame of 1 second.

Continuation:

Designation	Values	Description
Channel function: Staircase light time switch with pre-warning function..		
Response in the event of bus failure	Unchanged ON OFF	If the bus voltage has failed for more than 6 seconds then the channel adopts the status defined here. The same applies to a complete or partial download of the application. If the value is "unchanged" then any pulses which are still running are still executed.
Behaviour after restoration of the mains supply or bus supply	Start pulse OFF	After restoration of the mains supply or restoration of the bus supply with the mains voltage present, the channels revert to the status defined here within a time frame of 1 second.

5 Appendix

5.1 The scenes

5.1.1 Principle

The scene function allows the current switching condition or dimming value for one or more channels to be saved.
All possible lighting situations can thus be easily and comfortably restored at any time by calling a scene.

- Up to 8 different scenes can be defined.
- Participation in one or more scenes can be individually selected for each channel.
- The scenes are permanently stored and remain intact even after the application has been downloaded again.

5.1.2 Saving scenes (teach in)

To teach in a scene, the associated scene code is sent to the scene object.
Saving codes for scenes

Scene number	Saving code	
	Hex.	Dec.
1	$\$ 80$	128
2	$\$ 81$	129
3	$\$ 82$	130
4	$\$ 83$	131
5	$\$ 84$	132
6	$\$ 85$	133
7	$\$ 86$	134
8	$\$ 87$	135

If a scene in which the channel is participating is taught in via the scene object, the current condition of the channel is saved. It does not matter whether the condition was established via the rotary switch or by bus telegram.

5.1.3 Calling scenes

Just as with teaching in, scenes are called by sending a code to the scene object.
Calling codes for scenes:

Scene number	Calling code
	Hex. / Dec.
1	0
2	1
3	2
4	3
5	4
6	5
7	6
8	7

If a scene in which the channel is participating is called via the scene object, the channel assumes the saved condition.

This status can be changed again at any time by sending to the switching object or by sending to the central switching object.

Channels not participating in scenes are not affected by this.

